3,092 research outputs found

    Reduced Phase Space Quantization and Dirac Observables

    Full text link
    In her recent work, Dittrich generalized Rovelli's idea of partial observables to construct Dirac observables for constrained systems to the general case of an arbitrary first class constraint algebra with structure functions rather than structure constants. Here we use this framework and propose a new way for how to implement explicitly a reduced phase space quantization of a given system, at least in principle, without the need to compute the gauge equivalence classes. The degree of practicality of this programme depends on the choice of the partial observables involved. The (multi-fingered) time evolution was shown to correspond to an automorphism on the set of Dirac observables so generated and interesting representations of the latter will be those for which a suitable preferred subgroup is realized unitarily. We sketch how such a programme might look like for General Relativity. We also observe that the ideas by Dittrich can be used in order to generate constraints equivalent to those of the Hamiltonian constraints for General Relativity such that they are spatially diffeomorphism invariant. This has the important consequence that one can now quantize the new Hamiltonian constraints on the partially reduced Hilbert space of spatially diffeomorphism invariant states, just as for the recently proposed Master constraint programme.Comment: 18 pages, no figure

    Bimetal sensor averages temperature of nonuniform profile

    Get PDF
    Instrument that measures an average temperature across a nonuniform temperature profile under steady-state conditions has been developed. The principle of operation is an application of the expansion of a solid material caused by a change in temperature

    Experimental study of flow distribution with circumferential manifolds

    Get PDF
    Water flow test results on fluid flow distribution and pressure loss in curved manifolds with tangential or radial entry are reported. Manifolds were studied both as inlet and outlet manifolds. Manifolds can be used for boilers and/or heat exchangers for advanced space electric power plants

    Spectral correlations in systems undergoing a transition from periodicity to disorder

    Get PDF
    We study the spectral statistics for extended yet finite quasi 1-d systems which undergo a transition from periodicity to disorder. In particular we compute the spectral two-point form factor, and the resulting expression depends on the degree of disorder. It interpolates smoothly between the two extreme limits -- the approach to Poissonian statistics in the (weakly) disordered case, and the universal expressions derived for the periodic case. The theoretical results agree very well with the spectral statistics obtained numerically for chains of chaotic billiards and graphs.Comment: 16 pages, Late

    Tunneling And The Onset Of Chaos In A Driven Bistable System

    Full text link
    We study the interplay between coherent transport by tunneling and diffusive transport through classically chaotic phase-space regions, as it is reflected in the Floquet spectrum of the periodically driven quartic double well. The tunnel splittings in the semiclassical regime are determined with high numerical accuracy, and the association of the corresponding doublet states to either chaotic or regular regions of the classical phase space is quantified in terms of the overlap of the Husimi distribution with the chaotic layer along the separatrix. We find a strong correlation between both quantities. They show an increase by orders of magnitude as chaotic diffusion between the wells starts to dominate the classical dynamics. We discuss semiclassical explanations for this correlation.Comment: 17 pages in REVTeX preprint format. A version with encapsulated Postscript figures included (via epsf) and GIF-images of wave functions are available from the Gopher server aix.rz.uni-augsburg (port 300) in directory U Augsburg/Inst.f.Physik/Lst.f.Theo.PhysI/Tunneling an

    A perturbative approach to Dirac observables and their space-time algebra

    Full text link
    We introduce a general approximation scheme in order to calculate gauge invariant observables in the canonical formulation of general relativity. Using this scheme we will show how the observables and the dynamics of field theories on a fixed background or equivalently the observables of the linearized theory can be understood as an approximation to the observables in full general relativity. Gauge invariant corrections can be calculated up to an arbitrary high order and we will explicitly calculate the first non--trivial correction. Furthermore we will make a first investigation into the Poisson algebra between observables corresponding to fields at different space--time points and consider the locality properties of the observables.Comment: 23 page

    Testing the Master Constraint Programme for Loop Quantum Gravity II. Finite Dimensional Systems

    Full text link
    This is the second paper in our series of five in which we test the Master Constraint Programme for solving the Hamiltonian constraint in Loop Quantum Gravity. In this work we begin with the simplest examples: Finite dimensional models with a finite number of first or second class constraints, Abelean or non -- Abelean, with or without structure functions.Comment: 23 pages, no figure

    Minimalistic approach of a complex and flexible teaching laboratory for photovoltaic energy conversion experience from courses at the Kasetsart University in Bangkok and at GPEsolar Technical University Berlin

    Get PDF
    A complex of more than ten laboratory tasks was developed complementary to lectures and seminars for teaching of principles of solar cells and their applications. The laboratory covers topics of basic characteristics, materials and types of solar cells as well as of characterization methods and applications in solar energy conversion and can be extended to research aspects. Students with different background can independently discover a certain aspect in the field of photovoltaic energy conversion within four hours. Tasks can be easily applied at universities in developed and developing countries and most of them can be reproduced at low cost. The mobile laboratory can be setup in a short time and is well suitable for changing places of teaching. The vision to implement related laboratory tasks into experimental interdisciplinary teaching centers for renewable energy at universities has been draw

    Quantum Spin Dynamics VIII. The Master Constraint

    Get PDF
    Recently the Master Constraint Programme (MCP) for Loop Quantum Gravity (LQG) was launched which replaces the infinite number of Hamiltonian constraints by a single Master constraint. The MCP is designed to overcome the complications associated with the non -- Lie -- algebra structure of the Dirac algebra of Hamiltonian constraints and was successfully tested in various field theory models. For the case of 3+1 gravity itself, so far only a positive quadratic form for the Master Constraint Operator was derived. In this paper we close this gap and prove that the quadratic form is closable and thus stems from a unique self -- adjoint Master Constraint Operator. The proof rests on a simple feature of the general pattern according to which Hamiltonian constraints in LQG are constructed and thus extends to arbitrary matter coupling and holds for any metric signature. With this result the existence of a physical Hilbert space for LQG is established by standard spectral analysis.Comment: 19p, no figure

    (Broken) Gauge Symmetries and Constraints in Regge Calculus

    Full text link
    We will examine the issue of diffeomorphism symmetry in simplicial models of (quantum) gravity, in particular for Regge calculus. We find that for a solution with curvature there do not exist exact gauge symmetries on the discrete level. Furthermore we derive a canonical formulation that exactly matches the dynamics and hence symmetries of the covariant picture. In this canonical formulation broken symmetries lead to the replacements of constraints by so--called pseudo constraints. These considerations should be taken into account in attempts to connect spin foam models, based on the Regge action, with canonical loop quantum gravity, which aims at implementing proper constraints. We will argue that the long standing problem of finding a consistent constraint algebra for discretized gravity theories is equivalent to the problem of finding an action with exact diffeomorphism symmetries. Finally we will analyze different limits in which the pseudo constraints might turn into proper constraints. This could be helpful to infer alternative discretization schemes in which the symmetries are not broken.Comment: 32 pages, 15 figure
    • …
    corecore